

Overview of geological storage of CO2

Bandung
December 2013

Project Director Eva Halland Norwegian Petroleum Directorate

www.npd.no

CO2STORAGE NORWEGIAN NORTH SEA

Petroleum and Energy
December 13th 2011

Objectives and requirements

- Find the safe and effective areas for storage of CO₂
- No interference with the petroleum activity
- ➤ Build on the accumulated knowledge from the Norwegian petroleum activity
- ➤ Build on the experience we have with CO₂ storage
- Mapping and volume calculations should be verifiable
- The work will define relevant storage areas and estimated storage capacities
- ➤ The evaluation will form the basis for any terms and conditions set for a development of a storage site offshore Norway

Storage of CO₂ is about:

NPD

Norwegian CO₂ storage experiences

Cooperation between Universities, Research Institutions, Industry companies and the Government

EU's Framework programme (FP7) 2007 -2013 EU budget of around €50.5billion

Two FME in CO₂ storage (Centre for Enevironment Friendly Energy research)

BIGCCS: 2009-2016, 22 partners SUCCESS: 2009-2016, 8 partners

CO₂ Storage Forum, chaired by NPD

08/12/2012 10

Possible leakage points

Evaluation process for safe CO₂ storage sites

Geological formations and saline aquifers

^{*} Evaluated prospects

CHARACTERIZATION OF AQUIFERS AND STRUCTURES

	Criteria		Definitions, comments
Reservoir quality	Capacity, communicating volumes	3	Large calculated volume, dominant high scores in checklist
		2	Medium - low estimated volume, or low score in some factors
		1	Dominant low values, or at least one score close to unacceptable
	Injectivity	3	High value for permeability * thickness (k*h)
		2	Medium k*h
		1	Low k*h
Sealing quality	Seal	3	Good sealing shale, dominant high scores in checklist
		2	At least one sealing layer with acceptable properties
		1	Sealing layer with uncertain properties, low scores in checklist
	Fracture of seal	3	Dominant high scores in checklist
		2	Insignificant fractures (natural / wells)
		1	Low scores in checklist
Other leak risk	Wells	3	No previous drilling in the reservoir / safe plugging of wells
		2	Wells penetrating seal, no leakage documented
		1	Possible leaking wells / needs evaluation
Data cover age	Good data coverage	mited data cov	overage Poor data coverage

Other factors:

How easy / difficult to prepare for monitoring and intervention. The need for pressure relief. Possible support for EOR projects. Potential for conflicts with future petroleum activity.

Data coverage

Good: : 3D seismic, wells through the actual aquifer/structure

Limited: 2D seismic, 3D seismic in some areas, wells through equivalent geological formations

Poor : 2D seismic or sparse data

Estimation of CO₂ storage volume

Conceptual model for open aquifers

- Storage space is generated by displacing existing fluids and distributing pressure increase in surrounding aquifer system
- Storage volume = $A \cdot height \cdot N/G \cdot \phi \cdot S_{eff}$
- Seff depends on connectivity to surrounding aquifer
- S_{eff} = Used space/Available space

- - Fault

Storage capacity site specific! $M_{CO_{2t}} = A \times I$ Mcd A: h: φ: Pcogr. $M_{CO_{2e}} = A \times$ Ψ × ρco₂r × S_{eff} Mcoze: effective storage capacity area of aquifer A: height × net to gross ratio h: φ: average reservoir porosity CO₂ density at reservoir conditions PCO21. Seff. storage efficiency factor

retical vs. effective capacity Storage coefficient (by the rule-of-thumb) Seff

